翻訳と辞書
Words near each other
・ Van den Hove
・ Van Den Spiegel
・ Van den vos Reynaerde
・ Van Denbergh-Simmons House
・ Van der Aa (disambiguation)
・ Van der Auwera
・ Van der Beek
・ Van der Bijl
・ Van der Boom
・ Van der Burg
・ Van der Burgh
・ Van der Byl
・ Van der Cammen
・ Van der Capellen Scholengemeenschap
・ Van der Corput lemma (harmonic analysis)
Van der Corput sequence
・ Van der Corput's method
・ Van der Does
・ Van der Duim
・ Van der Elst
・ Van Der Elst visa
・ Van der Ende
・ Van der Gaag
・ Van der Geest
・ Van der Giessen
・ Van der Giessen de Noord
・ Van der Graaf Generator
・ Van der Graaf Generator discography
・ Van der Grinten projection
・ Van der Haar


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Van der Corput sequence : ウィキペディア英語版
Van der Corput sequence

A van der Corput sequence is an example of the simplest one-dimensional low-discrepancy sequence over the unit interval; it was first described in 1935 by the Dutch mathematician J. G. van der Corput. It is constructed by reversing the base ''n'' representation of the sequence of natural numbers (1, 2, 3, …).
The ''b''-ary representation of the positive integer ''n'' (≥ 1) is
:
n=\sum_^d_k(n)b^k,

where ''b'' is the base of in which number ''n'' is represented, and 0 ≤ ''d''k(''n'') < ''b'', i.e. the ''k''th digit in the ''b''-ary expansion of ''n''.
The ''n''th number in the van der Corput sequence is

g_b(n)=\sum_^d_k(n)b^.

== Examples ==
For example, the decimal van der Corput sequence begins
:0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.01, 0.11, 0.21, 0.31, 0.41, 0.51, 0.61, 0.71, 0.81, 0.91, 0.02, 0.12, 0.22, 0.32, …,
whereas the binary van der Corput sequence is
:0.12, 0.012, 0.112, 0.0012, 0.1012, 0.0112, 0.1112, 0.00012, 0.10012, 0.01012, 0.11012, 0.00112, 0.10112, 0.01112, 0.11112, …
or, equivalently,
:\tfrac, \tfrac, \tfrac, \tfrac, \tfrac, \tfrac, \tfrac, \tfrac, \tfrac, \tfrac, \tfrac, \tfrac, \tfrac, \tfrac, \tfrac, \ldots.
The elements of the van der Corput sequence (in any base) form a dense set in the unit interval; that is, for any real number in (1 ), there exists a subsequence of the van der Corput sequence that converges to that number. They are also equidistributed over the unit interval.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Van der Corput sequence」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.